Simulated analysis and optimization of a three-antenna airborne InSAR system for topographic mapping
نویسندگان
چکیده
A three-antenna synthetic aperture radar interferometer (InSAR) with a statistically optimal data processor for three-dimensional (3-D) terrain mapping has been proposed recently to reduce the phase ambiguity and data-noise drawbacks of the conventional two-antenna SAR interferometry technique. In this paper, a numerical simulator is developed to assess the achievable performance and various design tradeoffs of the three-antenna InSAR. The most critical conditions for the new reduced-ambiguity system operating on realistic scenes are taken into account. The phase-unwrapping procedure is included in the simulator to compare the new and the conventional technique in terms of both phase and height-estimation accuracy. The performance achievable by a three-antenna airborne InSAR system on a given site are analyzed, and the parameter optimization of the new system is investigated. The results of several case studies show that the new technique can outperform the conventional one significantly for a typical airborne configuration, especially for high-terrain steepness. It provides reduced-phase aliasing and better estimation accuracy. So, the phase unwrapping is simplified and high-quality maps of terrain height can be obtained. As a limit, absolute phase retrieval can be achieved with good accuracy and the unwrapping procedure can be avoided.
منابع مشابه
Topographic Mapping with Multiple Antenna SAR Interferometry: A Bayesian Model-Based Approach
Multiple-antennaSAR interferometryinvolves the use of three or more antennas to reduce the overall phase ambiguities and phase noise in interferometric data. This paper presents a Bayesian approach to topographic mapping with multiple-antenna SAR interferometry. Topographic reconstruction is formulated as a parameter estimation problem in the model-based Bayesian inference framework. An InSAR s...
متن کاملPenetration depth of interferometric syntheticsaperture radar signals in snow and ice
Digital elevation models of glaciated terrain produced by the NASA/Jet Propulsion Laboratory (JPL) airborne interferometric synthetic-aperture radar (InSAR) instrument in Greenland and Alaska at the C(5.6 cm wavelength) and L-band (24-cm) frequencies were compared with surface elevation measured from airborne laser altimetry to estimate the phase center of the interferometric depth, or penetrat...
متن کاملThree-dimensional Borehole Radar Imaging
Before embarking on any mining operation, it is advantageous to locate the subsurface orebody in three-dimensions with a high resolution (~1m) ahead of actual mining, because this will increase productivity and efficiency. Borehole radar is such an emerging mapping tool in the mining industry, that can be used to image the subsurface orebody with high resolution. 3-D subsurface imaging using tw...
متن کاملReal-time Unwrapped Phase Generating Algorithm based on Airborne Dual-antenna InSAR System
In order to satisfy the requirement of terrain mapping in real-time, this paper solves the problem of too large computation in the traditional interferometric processing algorithm, and provides the algorithm to generate real-time unwrapped phase with high quality based on airborne dual-antenna InSAR system. It utilizes non-linear ECS autoregistration imaging algorithm to generate high accuracy ...
متن کاملBaseline Estimation Algorithm with Block Adjustment for Multi- Pass Dual-antenna Insar
Baseline parameters and interferometric phase offset need to be estimated accurately, for they are key parameters in processing of InSAR (Interferometric Synthetic Aperture Radar). If adopting baseline estimation algorithm with single pass, it needs large quantities of ground control points to estimate interferometric parameters for mosaicking multiple passes dual-antenna airborne InSAR data th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 37 شماره
صفحات -
تاریخ انتشار 1999